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J PREFACE

j Nonmathematical Summary

This study is concerned with the problem of choosing the amounts

JX , PX ,., n  of a single product (or aggregation of several products)

I to produce in each of n successive time periods 1,2,...,n so as to

minimize the total manufacturing costs over the n periods. The re-

quirements r1 r2,...,r n  for the product occurring in periods 1,2,...,n

ji are assumed to be known in advance. Requirements in a period are

satisfied in so far as possible from stock on hand at the beginning of

the period and from production during the period. Requirements which

cannot be met in this way are backlogged until they can be satisfied

by subsequent production.

i
Let Yi - I (xj-rj). If yi > 0, then Yi is the amount of

j -l

inventory on hand at the end of period i. If y is negative, then

-Y, is the total amount by which the cumulative requirements exceed

the cumulative production in the first i periods. We suppose that

this excess, -y' is backlogged until it can subsequently be satisfied.

Denote the cost of producing xi units in period i by ci(xi).

The cost of storing yi( > 0) units at the end of period i is denoted

by hi(yi). When y < 0, hi(yi) is the penalty cost incurred because

-. " units of requirements are backlogged at the end of period i.

We suppose that there are given upper and lower limits xi and xi

(x I <i) respectively on production in period i (= l,2,...,n). In

addition there are given upper and lower limits and (

I



on yi in period i (=l,2,...,n-l); and no inventory or backlog is

allowed at the end of period n, i.e., Yn = O.

The problem is to choose production levels Xl...,xn that

minimize the total cost

n n-i

ci(xi) + n hi(yi)
i1l i=l4

over the n periods subject to the above named constraints.

We assume that the cost functions ci and hi are convex. For

example they might appear as in Figure 1.

Ai:(x i  hi(Yi)J

0 xi xi i 0 i Ii
Figure 1

(The functions in Figure 1 are convex because the chord connecting any

two points on the graph of either function does not fall below the

graph of the function between the two given points.)

The objective of our study is to determine the effect of changes in

the requirements and capacity limitations (production, storage, backlog)

upon the optimal production levels. We show that the optimal production

level in a given period is a non-decreasing function of (1) the require-

ments in any period, (2) the upper and lower production capacity limits

ii
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!I in the given period, and (3) the upper and lower storage limits / in

I the given and all succeeding periods; the optimal production level in
a given period is a non-increasing function of (1) the upper and lower

production capacity limits in any other period and (2) the upper and

lower storage limits in all preceding periods. The above results also

lead to simple and efficient computational procedures for finding

optimal production quantities.

As an illustration of these methods, suppose that the production

levels are assumed to be integers. Suppose also that we have optimal

(integer) production levels Xl...,xn for the (integer) requirements

rl,...,rn. We seek optimal production levels x ...,xn for the re-

I quirements r,.r' where r+ 1 for some k and r! - ri for

I A k. In this circumstance we show that there is an integer j (not

necessarily equal to k) for which xt = xi ± 1 and xj = xi for i J.
S i -

Example:

As an example of the way in which this result can be applied to

find an optimal production schedule, suppose the data are as given in

table 1 below.

In this discussion backlogged requirements are viewed as negative
inventories.
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Table 1

- - Ii
r xr r y c.(1) a (2) a (3) hi(-l) h (1) h (2) h (3)

1-2 3 -1 2 10 21 33 7 1 3

:.2 1 3 0 3 13 26 4o 2 5 8 I
3 3 2 -1 2 9 2 8 1 0 1 2 

4, 1 o i

Also a1(0) - hi(O) 0 - for all i. |1

The idea is to begin by defining a sequence of requirements for which I
there is only one feasible set of production levels. For example, if

r1 - -2, r2 = 0, r3 = 1, r = 1 then x, - 0 for i=1,2,3,4 is the

only feasible set of production levels aincc x 0 for all 1. We jj
now increase the requirements one unit at a time until we obtain the

requirements in table 1. At each stage we find a corresponding optimal

collection of production levels.

We begin by increasing the requirements in (say) period 3 to two.

From what we have said above, this requires us to produce one additional

unit in one of the first four periods. Increasing production in periods

one or four is not feasible, the former because the upper inventory

limit in period one would be violated and the latter because the upper

limit on production in period four would be violated. The cost of

producing the one unit in periods two and three is i

iv
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6 02(1) + hi(2) + h2(3) + h3( . 13+3+8+1 = 25

and

cW(1) + hl(2) + h2(2) + h3() = 9+3+5+1 = 18

respectively. Thus, the production levels x3 = 1 and xi - 0, i 3,

are optimal for the requirements r 1  -2, r2  0, r3 = 2, r4  .

Next we increase the requirements in period two by one. This time the

most economical plan is to increase production in period two by one.

I The final step is to increase requirements in period three again by

one unit obtaining r1- -2, r2 i 1, r 3  3, r4 
= 1. The best plan is

1: now to increase production in period two by one, obtaining xI = 0,

x2 =2, x3  1, x4 * 0 as the final set of optimal production levels.

I
tI
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. PRODUCTION PLANNING WI{ CONVEX COSTS:

A PARAMETRIC S UDY

by

Arthur F. Veinott, Jr.

1. Introduction and Summary

We consider the problem of choosing the amounts XlX 2 ,...,x n  of

a single product to produce in each of n successive time periods

1,2,...,n so as to minimize the total manufacturing costs over the

n periods. The requirements rl,r2,...,rn for the product occurring

in periods 1,2,...,n are known in advance. Requirements in a period

are satisfied in so far as possible from stock on hand at the beginning

of the period and from production during the period. Requirements which

cannot be met in this way (because, for example, of limited production

capacity) are backlogged until they can be satisfied by subsequent

production. It is convenient in the sequel to view backlogged require-

ments as a negative inventory. Similarly, disposal of ("excess") stock

is viewed as negative production.

We admit two types of costs in a given period: production and

holding, the former being a disposal cost when the production level is

negative and the latter being a backlogging cost when the inventory

level is negative. These costs are assumed to be convex functions

respectively of the quantities produced during and stored at the end of

the period. In addition we permit upper and lower limits to be imposed

on the amounts produced and stored. The cost functions and quantity

limitations for successive periods need not be the same.



The model can be interpreted in a variety of different ways including

service scheduling, warehousing decisions, and distribution of effort.

Several of these possibilities are discussed in 141 and (7).

Our objective is to study the effect upon the optimal production

levels of changes in the parameters, i.e., the requirements and

quantity limitations. In the event that the total cost function is

strictly convex, the optimal production quantities are unique. For

this case our two main results are easily stated as follows. First,

the optimal production level in a given period is a non-decreasing

function of (1) the requirements in any period, (2) the upper and

lower production capacity limits in the given period, and (3) the

upper and lower storage limits in the given and all succeeding

periods; the optimal production level in a given period is a non-

increasing function of (1) the upper and lower production limits in

every other period and (2) the upper and lower storage limits in any

preceding period. Second, the optimal cumulative production levels

are each non-decreasing functions of the cumulative *1
i

requirements R ,R2J...,R n  in each period, where Xi = xj and

j =1

The first result is of interest for studies of possible changes

in the production or storage capacities, or changes in the minimal

guaranteed production level. The first result is also the basis for

some efficient parametric programming procedures to be described later.

The second result is useful in forecasting. For example suppose that

we do not know the actual cumulative requirements RI,%2,..o, but

i
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ii can forecast maximal and minimal cumulative requirements ~%~ n

and RR2,.,n respectively with assurance that R <.R i for

all i. We may then compute the corresponding optimal maximal and

Jminim). cumulative production levels X1PX2j ...~X and..'

and be assured that the cumulative production levels XlX 2,...,Xn that

ii are optimal for R are such that 2C X X for all i.

At the beginning of period one we will ordinarily only have to

choose i and not subsequent production levels. If it happens that

I. - and this can occur even when the R and11 are not all

the same - then the optimal amount to produce in period one is determined

as Zl without complete knowledge of the R If instead 41 , 1'

then improved forecasting is needed in order to determine the optimal

value of XI. The value of narrowing the forecast interval in various

I. periods can be assessed by determining its effect upon the width of the

interval (k1, X1 ].

The rather intuitive relations described above between the optimal

yi production levels and the various parameters do not hold in general,

but do seem to be valid in a number of-situations not encompassed by

{our hypotheses. It is somewhat surprising, however, that the results

may fail to hold when the total costs are convex but cannot be expres-

I sed in the form assumed in this paper. For example, suppose the total

cost for a two period model is

max(x2,3xI + 2x2-
6 )

I This function is convex since the maximum of two linear functions is

convex. However, if the requirements are rl= r2= 1, then the optimal

I



production levels are xI= 2, x2 = 0, while if rl= 1, r 2 = 3 the

optimal production levels are xl= 1, x2 = 3 (assuming X2  R2 and i
xI > 0, x2 > 0). Observe that neither of our two results holds here.

The fact that the optimal production quantities are non-decreasing H
functions of the requirements leads immediately to an extremely simple

procedure for computing optimal production schedules. In order to

justify the algorithm we are about to describe, it is necessary to

make two additional assumptions. First, the cost functions are piece-

wise linear with the endpoints of each of the intervals on which the

functions have linear segments being integers also. Secondthe require-

ments and the upper and lower limits on production and storage are all

integers. Under these conditions we show that there are optimal

production levels that are also integers. i/

In the most elemental problem with which our algorithm deals, we

start with optimal production levels x (all integers) for a

given sequence of requirements rl,...,r n. We then wish to find optimal

production quantities xt,...,xI for the new requirements r )...,r'
1 n 1 n

where r = r + 1 (= ri-1) for some i and r' = rj for A 1 i.

Our basic result is that there is an integer k(l < k < n) for which JI

x= xk + 1 (= xk-1) and x = x, for J A k. This means that in

l_/ This fact is not surprising since several authors [1], [6] have I
shown that special cases of our model can be formulated as
transportation type linear programming problems for which integer
solutions exist. (The amounts "shipped" and "received" must be
integers, of course, as they would be under our assumptions.)
Our problem can also be formulated in this way.

l1



I: order to find (x3]) , it suffices to eompute the total cost under each of

the n possible production sequences (corresponding to k=1,2,..., n),

and then to choose the cheapest one.

j! Our approach to more complex problems involves solving a sequence

of elemental problems. For example, suppose that we seek optimal pro-

J. duction levels x ,...,xA for a requirements sequence ri,...,rI for

which the r' are arbitrary integert. We begin by defining a sequence

of requirements rl,...,r n for which there is only one feasible set of

production levels xl, ... ,xn. To illustrate, if disposal of stock is not

allowed, we may choose x J=r j=0 for all j (provided that this choice is

feasible). We then construct a new requirements sequence by adding

+1(-l) to any rj for which (r. -r) is positive (negative). Next we find

an optimal production schedule for the new requirements sequence using

the technique described in the preceding paragraph. We then repeat the

process after replacing the original rj by the new requirements. We

continue in this way until we find that r' = r for all J, at which

point the original problem is solved. The process must terminate because
n

at each stage we reduce I jr5-rjj by +1.
J=1

When the r' are all non-negative, one can view the above process as

satisfying each unit of requirements in turn as cheaply as possible. The

special case of this procedure in which requirements must be satisfied in

order of their due dates is shown by Johnson (2] to be optimal for the

special case of our problem in which no backlogging is allowed, no storage

4" limits are permitted, and the inventory carrying costs are linear.

The parametric programming procedure that we have described above in-

. volves only changes in the requirements. In section 4 we develop a generalized

the
procedure in which changes in/production and storage limits are allowed as well.
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Alternative procedures for solving the problem considered by

Johnson are offered in [4], [5], and [8]. In [9] a generalization of

Johnson's procedure is shown to be applicable where the price received

for each unit of product sold depends on the quantity sold. l/ A dynamic

programming procedure that solves the general problem in this paper and

that neatly exploits the convexity assumptions is given in (I4.

References to earlier work will be found in (1], [i, [51, (61, [71,

[8], (9].

We outline the plan of this paper. The problem is formulated in

section 2. We establish certain fundamental inequalities in section 3.

In section 4 we develop computational procedures for finding optimal

production levels.

2. Formulation of the Problem

Let yo be a given constant and let

i

(i) Yi = , (xj-rj) + y for i 1,2,...,n .

We interpret lyil as the total amount of stock on hand at the end

of period i when yi ? 0, and as the total amount of backlogged

requirements at that time when yi < 0. We are implicitly assuming

Actually our model provides for this possibility by allowing
disposal of stock. We omit a discussion of this point, however.

6g



!

that it is not possible to end a period with both a positive inventory

and a positive amount of backlogged requirements. Similar remarks apply

to production and disposal in a given period.

4 There are given upper and lower bounds, yl and y (< i) on

Yip i.e.,

(2) y <yi < for i - 1,2,...,n-l

Observe that by choosing yi = 0 for all i that we eliminate all

backlogging. We may also allow minimum inventory levels (e.g., as a

j hedge against uncertainty) by letting y, be positive.

We suppose that

(3) x<xI 5<i_ for i =1,2...,n

where the 5i and xi (x < are given constants. The presence of

minimal production levels enables us to study the effect of different

guaranteed employment policies.

Let g(x,r) be the total cost associated with the production

schedule x = (xi) and requirements schedule r = (ri). ._/ We assume

that g can be written in the form

n n-i
(4) g(x,r) = ci(x i ) + hi(y i )i=l i=l.

We write z = (zi) to mean that z is a vector whose ith

coordinate is zi .

7



where c and hi are convex and continuous on the intervals

[Xi , xi] and [Y Yi respectively. In applications cj(xi) is

the cost in period i of producing xi units if. x > 0 and of disposing of
*-x~ ~ unt fxi h oti

6xi units if X, < 0; hi(yi) is the cost in period i of carrying yi

units in inventory if y, 0 and of backlogging -yi units if

Yi <0.

There is no loss of generality in assuming that y = 0 since,

by virtue of (1), (2), and (4), we may replace rI by (rI -yo).

This substitution could lead to a negative value of r1 - a possibility

that we do not rule out. Indeed we permit any of the ri to be negative.

Our final assumption is that

(5) Yn 0

which states that we must end period n with no inventory or backlog.

It is convenient to let ( = (xi)' , = (xi) , = (yi) ,

and p = (-r, i, x, y, ). We call p a parameter set.

In the sequel we shall say that the production schedule x is j
feasible for the parameter set p (or briefly, x is feasible for 1
p) if the restrictions (1), (2), (3), and (5) are satisfied. If x

minimizes (4) subject to the above constraints, we say that x is

optimal for p. Finally, we say that p is feasible if there is an

x that is feasible for p.

Since the collection of feasible production schedules is compact

whenever p is feasible, and since g is continuous, there exists an

optimal x whenever p is feasible.

8



In certain situations it is desirable to drop the assumption (5).

When this is the case we shall suppose that there are given limits

Yn and Yn on the inventory level at the end of period n. We can

jthen imbed the original n-period problem in an (n+l)-period problem

in which (5) does hold without loss of optimality.

I In the extended problem we put rn+l= yn' Xn+l= Yn" Yn' n+l 0,

and let c n+l(z) = and h n+(z) = 0 for all z. Denote by x any

feasible production schedule for the n-period model in which (5) is

not imposed. Then in order for the schedule ; = (x, xn+l) to be

feasible for the (n+l)-period model in which (5) does hold, we must have

O Yn+l Yn + Xn+l " rn+l

' r n r ( 1 \ -v = r - v - T h i s u -n i n i i e l v A a t- ai n l a n

b ! n +l n+l n . . . M . .. .. . . . .

Xn+l also satisfies (3) for i = n+1 by virtue of the definition of

Ithe parameters for period n+l.

We now show that x* is an optimal schedule for the n-period

model in which (5) need not hold if and only if x* = (x*, x* ) is
n+l

optimal for the (n+l)-period model with (5) holding. First suppose

that x* is optimal for the n-period model and that ; = (x, xn+l)

is any feasible schedule for the (n+l)-period model with requirements

schedule r (r, rn+l). Then x is feasible for the n-period model.

Also g(,;) = g(x,r) > g(x*,r) = g(*,), which was to be shown.

Now suppose that x* is optimal for the (n+l)-period model. Then

g(x,r) = g(, ) > g(;*,;) = g(x*,r), which completes the proof.

The above remarks enable us to confine our discussion in the sequel

to situations in which (5) holds.

19
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3. The Fundamental Inequalities

In this section we establish two important inequalities that relate

the difference between two parameter sets to the difference between the

corresponding optimal production schedules. In order to state the first

result it is convenient to introduce a definition. Let z = (z) be

an (n-) coordinate vector of real numbers. Let m(z) be the corre-

sponding n coordinate vector of real numbers whose ith (i < i < n) ii
coordinate is max zj and whose nth coordinate is zero.

Theorem I

suppose that p (-r, x, x, y, ) and p' -(-r', 7t, xt, 7, ")

are feasible parameter sets and that pt < p. 1/ If x(x') is optimal

for p(p'), th thre is an x'(,X) that is optimal for PI(P) and

that satisfies

(6) (x-x) >

Before proving the theorem we note briefly some of its implications.

Observe that if p and p' coincide except that r' > r, then (6)

Let 'V (vi) and w = (wi) be vectors of real numbers. We say
that v>w if v, > w, for all i.

10



states that x' > x. 1/ On the other hand if p and p' are identical

except that x' < x for some i, then (6) states that x1 > x for

j / 1 and x1>x-(xi-iI). Finally, if p and pt differ only in

I that y{ < y, for some i, then (6) states that x5 > xj-(i-yj) for

j i and x'>x for j>i.a - a
We remark that the inequality (6) can be sharpened at the expense

of complicating its statement. The simpler treatment is adequate for

our purposes, however.

Proof:

It is convenient to let y = (y ) and z = x-(-')-(x-x')-

We prove only the first part of the theorem, i.e., if x is

optimal for p, etc. (The proof of the second part is similar and

will not be detailed.) We do so by showing that for any schedule

I x* that is feasible for p' and that does not satisfy x* > z, there

is an alternative schedule x' such that

This special case of theorem 1 was motivated in part by theorem 2',
p. 245 in (3], which applies to a generalization of our problem in
which the requirements in each period are random variables.
Theorem 2' in (3] is not as strong as our theorem 1 for the case
of deterministic requirements. In our notation theorem 2' asserts
only that x > x1 . In theorem 2 of this paper we shall show that
the inequality x > x> holds under the weaker condition that
RI > Ri for all i.

11



(i) x' is feasible for p')

(ii) g(x',r') < g(x*,r');

(iii) (x'-x,x'-z,yl-y) has one (or more) fewer non-zero coordinates

than (x*-x,x*-z,-y*y).

Assuming for the moment the truth of the above result, observe

that either x1 > z or, upon replacing x* by x', that it is

possible to construct a new x' having the properties (i), (ii),

(iii). Since at each repetition of this procedure we either terminate

by finding an x' satisfying (i) and (ii) and having the property that

xt > z, or we reduce the number of non-zero coordinates of (x'-x,

x'-z,y'-y) by one, we must terminate in at most 3n-1 steps. To complete

the proof of the first assertion of the theorem, it is sufficient to

observe that if x* is optimal for p', the x' that is obtained at

the termination of the above process satisfies the conclusions of the

theorem.

It remains to describe a procedure for constructing a schedule x'

with the properties (i), (ii), (iii). Since x* i z, there exists an

i, I< i < n, for which x< < zi . It is convenient now to consider

iji
two cases, y,* < y~ and y,* > y±-

In order to conserve space we have not stated explicitly that
y* is the vector of inventories associated with x* and r'
because the notation makes this fact evident. For the same
reason we shall subsequently refer to y without identifying
it as the ith coordinate of y*. We shall follow a similar
practice hereafter when no ambiguity will result.

12



Case i1: yi-

Let j be the smallest integer greater than i for which

x* > xj Such an integer must exist for if not

Yn ~ -1 i-ix*-t 7_ I (xt-rt) = n = 0
t=i t=i

which contradicts (5). The inequality follows from the fact that

S)- Yx < x for t = i+l, i+2,...,n ;

and r rt  for all i.

Let £ = min(zi-x , x3-xj)* It follows from the preceding dis-

cussion that c > 0. In addition, as we now show,

(7) xi-x *>) yt-yt a e for t=il,...,j-L; and x3-x > .

The first and last inequalities follow from the definition of e. The

intermediate inequalities follow from the first inequality and

t t(8) 7t-Yt* = yi-y*- " rk' x;) x'x*

_ _1 I (rkr) + IJ'xk )
k=i k=i

Now define an alternative production schedule x' by

x, = x* + E(ui-u ), where uk is the kth  coordinate unit vector,

i.e., the kth coordinate of uk is +1 and all other coordinates

are zero. We show that x' is feasible for pt as follows. Using

(6), (8), the definition of C, the hypotheses of the theorem, and

the feasibility of x and x* respectively for p and p', we have

13



(9) j~< x* < x* + e x < z < xi(ii-ij) <

and

Thus since x' = x* for t ij, x' satisfies (3). Also for
tt

i < t<J

-<yt + x i -zi-( t- tl) +C

For all other t, Yt yt, so that x' satisfies (2) and (5).

Thus x' satisfies (i).

In the following we denote by D+f(x) and D'f(x) respectively

the right and left hand derivatives of a function f at the point x.

When the function is convex, as will be the case in the succeeding

discussion, we may be assured that the right and left hand derivatives

exist.

Using the convexity of ct and ht and (7) we have

g(x*,r') - g(x',r') a ei(x*) - ci(x +e)

l [h+ c (x*)-c (x*-)

k=+ k k(y+c)]

~i i k--i

>e[-D-c (x~+ Dhk(y) + D c (x*~)
> s[=D'ci(xi) -. J-l D'kY)+ D~ej(xj) ]

k=i

14



In view of this inequality we may establish property (ii) by

showing that

1i (10) -Dc1 (xi) - j D h,(Y + ( i 0
k=i

J To prove (10) we show first that the schedule x( l) x-8(u i - uj)

is feasible for p provided that 0 < 8 < e. Assuming for the

moment that we have done this, we note that x is optimal for p

I and therefore that

r> 0 for 0 < 5 <

I Letting 6 -*O+ , the above inequality becomes (10).

It remains to establish the feasibility of x(b). Using (6), (8),

(9), the definition of e, the hypotheses of the theorem, and the

I feasibility of x and x* respectively for p and p', we have

X < < x- C< xe X

and

Also for i < t < j j

Yt 5 Z I t - zi +yt -Yt*+ XT

-Yt z + X -6< Yt - < yt(b) - y t - Yt

15



For t 1 ±,J, xt(b) =x t  and for t < i and t > J, yt y t so

that x(b) is feasible for p as claimed. 11
To establish (iii) we observe from the definition of e that all

but the ith and jth coordinates of (xl-x) and (x*-x), and of (xl-z)

and (x*-z) are identical. Also all but the ith through the (J-1 )th

coordinates of (y'-y) and (y*-y) are the same. On the other hand .1
the ith and jth coordinates of (x*-x) and (x*-z), and the ith I

ththrough the (J-l) coordinates of (y*-y) are all non-zero. But at

least one of these coordinates in (xl-x), (x'-z), or (yt-y) is zero,

which proves (iii). 10

Case 2: 4.1> 2i-l

Let j be the largest integer less than i for which x* > x

Such an integer must exist for otherwise

i-i -
Y-i (xt*-rt) _<X (xt-r t ) 

= Yi-i
t=l t=l ]

if i > 2 and y* = 0 if 1 1, which is a contradiction.
- 0

Let c w min(z -x*, X*-x ).- . Clearly E > 0. In

addition I

(11) x*-xj > c ; yt-yt >E for j < t < i-1 x-x*>e .

The first and last inequalities follow from the definition of E. It

remains only to observe that for J < t < i-i ,

16



i. i-i i-i

'Yt -l' t-1 (7'.xk) + X (r'-rk) > Y-l-yi- >! 'k=t+l k=t+l

I which establishes (ii).

We define an alternative schedule x' for p' by x' = x*+c(ui-uj).

The proof that x' satisfies (3) is precisely the same as for case 1.

Now for j < t < i, we have using (11), the hypotheses of the theorem,

and the feasibility of x and x* respectively for p and p' that

1 while for all other t, Yt = yt', so that x' satisfies (2) and (5).

Thus property (i) is established.

I If we now employ (11) and the convexity of the ct and ht, we

find that

g(x*,rl) - g(xl,rt) = c(x*) - c (x*-e)

i--i
1k=j i~k* k lh,y- e~ ) - Dc i+)

> e[Dk (xS-E) + ii

c [D~c i(x) + I D~hk(yk) - D-ci (x i)]
k=J

In order to verify property (ii) it therefore suffices to show that

(12) D+c(x ) + i Dl DhO(yk) " D'ci(xi) > 0
i J' k=j0

j Let x(8) = x-8(ui-uj). We show that x(8) is feasible for p

provided that 0 < B < c. The fact that x(b) satisfies (3) follows

117
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from the same argument used in case 1. For j <t < i, we have from

(ii), the hypotheses of the theorem, and the feasibility of x and

x* respectively for p and p' that

Yt :5 Yt :5 Yt ( t y; Y :5 Yt

and yt(5)  Yt for all other t. Thus, x(b) is feasible for p.

Since x is optimal for p,

>0 for 0< 8 .

Letting 5 -+0+ , we obtain (12).

The proof that x' satisfies (iii) is exactly the same as for

case 1 upon interchanging the roles of i and J. This completes

the proof.

In order to state and prove our next theorem it will be convenient

to introduce notation for the cumulative production and requirements

schedules associated respectively with the production and requirements

schedules x and r. In particular let

X = (X1,X2,..., Xn) and R = (RVR2,..., Rn) I

Theorem 2

Suppose that pM (-r, , X, y, ) and p' M (-r', 7, x, )

are feasible parameter sets and that R' > R. If x(x') is optimal

for p(p'), then there is an x'(x) that is optimal for p'(p) and

that satisfies X' > X.

18



Proof:

The proof of the first assertion in the theorem (i.e., if x is

optimal for p, etc.) consists in showing that for any schedule x*

that is feasible for p' and for which X* j X, there is an alternative

schedule x' that has the properties (i), (ii), (iii) (let z = x

in (iii)) given in the proof of theorem 1. Once this construction is

1 i justified, the first assertion of the theorem follows from an obvious

adaptation of the corresponding part of the proof of theorem 1. It

remains, therefore, to develop a procedure for constructing a schedule

x' with the properties (i), (ii), (iii).

Since X* k X, there is an integer i for which X* < Xi. Let

i be the smallest such integer. Denote by j the smallest integer

greater than i for which X* > X The integer j exists because

by(5)

X*-X = R'-R > 0

n n n n-

Let e = min(x i (x- )] We have E > 0 since

X = (XiX I) - - 1 ) > 0

=x-x (X*-X* -  - (X'X- > 0 and

Yk-Y' (X-p)" ('V > °  for i<k<j.

Now define the alternative schedule x' for p' by x' = x*+(u i- j

Thus y = yk+s for k = i,i+l,.ooJ-l and yi = yk otherwise. Using

these calculations it follows easily that x' satisfies (i).
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It is now possible to show that (ii) and (iii) hold using precisely

the same argument as that used to establish the same properties in case

1 of the proof of theorem 1. This completes the proof of the first

assertion of the theorem. The proof of the second assertion of the

theorem follows in a similar manner.

4. A Parametric Programming Procedure

Theorem 1 plays a central role in this section in the development

of procedures for finding optimal production schedules. Our techniques

are especially useful when we seek optimal production schedules for

several different parameter sets. This is because we use the informa-

tion gained in determining an optimal production schedule for one

parameter set in an efficient way to reduce the computations needed to

finc an optimal production schedule for a different parameter set.

In order to simplify the exposition in this section, it is con-

venient to impose the following assumption:

P: ci(xi) and hi are each piecewise-linear functions

with the endpoints of each of the intervals on which the

functions have linear segnents being integers also.

The basic result on which the computational procedures of this

section rest is

Theorem 3

Suppose that p = (-r, x, x, Y, X) and p' = (-r', 7', xf', ', Z')

are feasible parameter sets with integral coordinates, that (p-pt) is

20



a unit vector, that P holds, and that x(x') has integral coordinates

I and is optimal for p(p).

(a) If (,')=(,) then there is an x'(x) that is optimal

for p'(p) and that has the property that (x'-x) + (.-t) + (x-X')

is a unit vector.

(b) If ( -y') + (y-,') =u k  for some k, then there is an

x'(x) that is optimal for p'(p) and for which either (x'-x) = uj-u i

for some i < k < J, or (x'-x) = 0. 1/

We defer the proof of the theorem briefly in order to explore some

of its implications. The value of part (a) is that when we are given

an x that is optimal for p, we can find an x' that is optimal for

p' (where the upper and lower bounds on inventory levels are unchanged)

by considering only the n production schedules obtained by separately

adding each of the n unit vectors to x-(x-i') - (x-x'). On the other

hand if we are told that x' is optimal for p', part (a) assures us

that we need compare only the n production schedules obtained by

separately subtracting each of the n unit vectors from x' + (i-i') +

(X-X')

Example 1:

If x = (3,0,1) is optimal for p where r = (-2,6,0), = (3,3,3),

= 0, y = (5,7), and y = (0,-2), and if p' is such that r' = (-.1,6,0)

and (', 4', Y', ') = ( , x, Y, i'), then one of the three production

In this part uk has n-l coordinates while ti  and u have
n coordinates.
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schedules (4,0,1), (3,1,1), (3,0,2) is optimal for p'. in order to

find which one is optimal we first eliminate the infeasible schedule(s)

- in this case (4,0,1) - and then compute the cost associated with

each of the remaining schedules.

Example 2:

Suppose in example 1 that we let p be defined as before and let

xI = (0,1,0) and (-r',i',3hZ') - (-r, i, T, y). (Observe that these

definitions require us to interchange the roles of p and p' since *1
(p'-p) is a unit vector.) Then one of the three production schedules

(2,1,1), (3,0,1) (3,1,0) is optimal for p'. Of these schedules, only

the second is infeasible.

Part (b) of the theorem states in part that if we have at hand an

x that is optimal for p, if one of the upper or lower limits on

inventory is reduced, and if none of the other parameters is changed,

then we can find an x' that is optimal for pt by comparing the

k(n-k) schedules x + uj-ui, i < k < j, and the schedule x. This

comparison is almost as easy to perform as that in part (a), even

though superficially the number of comparisons may seem to be as high
n2

as -F - 1 (when k = n/2) rather than n-l as in part (a). The

reason for this is that the optimal values of i and j may be chosen

independently. This is because whatever the choice of i and J, the

inventory on hand at the end of period k is Yk-l when x + uj-u i

is the production schedule. The first k periods and the last n-k

periods can therefore be thought of as two separate sub-problems for

the purposes of this computation. Similar remarks apply when we are

given an x' that is optimal for pt .
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To summarize, theorem 3 provides a simple procedure for finding

J an optimal x' for p' once we are given an optimal x for p

provided that + (p-pt) is a unit vector. The procedure generalizes

f easily to situations in which + (p-p') is not a unit vector but

where the other hypotheses of the theorem are retained. The technique

is to successively add and subtract unit vectors from p until pf

is obtained. Optimal schedules are found in order for each inter-

mediate parameter set using theorem 3. Formally, denote by
p I  'p i2  n .pm-i the sequence of intermediate parameter sets produced

in the process of successively modifying p by adding and subtracting

unit vectors. Upon letting p0 = p and pm = p,, we see that each

pi(1 < i < m) is obtained by adding to or subtracting from pi-1 a

suitable unit vector. /

If we have at hand an x that has integral coordinates and that

is optimal for po(=p), we can determine in order of sequence
i1 2 m 12 m

X x x ,..., P of optimal production schedules for plp ... ,P

respectively. Each xi (1 < i < m) is formed from xi l by applying

the appropriate part of theorem 3.

i/ The choice of the p' is essentially arbitrary. Thus, if optimal

production schedules are needed for sev ral parameter sets, it may
be desirable to define the sequence (pl) so as to include these
sets. This may necessitate adding and subtracting the same unit
vector in the course of the computations. This creates no diffi-
culties but does increase the number of intermediate parameter sets
and hence the amount of computation. For a sequence (pi) in
which no unit vector is both added and subtracted, the number of
intermediate parameter sets will be

n
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Two questions remain unanswered by the above discussion. First,

how can we find a p 0  for which an optimal x°  is easily determined?

Second, what can be done if we find an intermediate parameter set p

say, that is infeasible? 4
We defer discussion of the second question until after we have

proved theorem 3. One answer to the first question is to define p

so that only one feasible production schedule exists. That schedule

is necessarily optimal and provides a starting point for the computa-

tions. Two illustrations of this idea are given below. Let

i i

-X andX

Start 1:

Suppose that x > 0 is an arbitrary production schedule with

integral coordinates for which X R' . In many cases it will ben n

natural to let x0  be a "good guess" at an optimal solution. If we

choose x = xo =x r° = r', yi = max(YiYi) and = min(yYi )

for all i, then x0  is the only feasible production schedule for j

p = (-r 0 o, xo , ?, yO)

Start 2:

Suppose that x = x(') and that r°  is such that r < r'(r ° >r')

and X' ). Let= max(Yi,Yi) andan R Vo1.LtV=12o=lYY

= min(y ,yo) for all i. Again x' is feasible and no other

schedules have this property.
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The above starting points are intended to be suggestive and

naturally do not exhaust all the possibilities. For example, an

obvious counterpart of start I is to set Y =

We now give a

Proof of theorem 3-part a:

We consider only the case where an optimal x is given for p.

The proof of the other case is similar and is therefore omitted.

By the first assertion of theorem 1 - and this is the key point

- there is an x' that is optimal for pt  and that satisfies xt > z,

where z = x-(-x')-(xx'). The remainder of the proof consists in

showing that g(x',r') is linear in x' for all feasible x' for

which x' > z. The theorem follows easily from this fact.

i
It is convenient to let Z =I zj for all i. We show that

~J=l

RA Z +1.n n

There are two cases, r' > r and r' = r. In the former event

R' = R + I= X + 1 =Z + 1n n n n

In the latter case

R' = R =X = Z + 1
n n n n

In view of (2), (3), (13), and the fact that x' > z, we have

(14) max(xl,zi) < x, < min(ii,zi+l) for i=l,2,...,n
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and

(15) max(y,Z,-R) Xi-RI' < 
r i=,2, ...,n-1 7

Since p, p', and x have integral coordinates, the upper and lower

limits in (i4) are integers, and they differ at most by one. A

similar remark is applicable to (15). Hence by P, there are numbers

ao0)a,...,;a n such that

n
g(x'r') = a0 + i£ ai x,

for all feasible x' > Z. Denote by S the set of all indices i

for which there is a feasible x' > z with xt > z . For these i,

x, = z + u, is also feasible. The set S is not empty, because

otherwise no feasible x' would exist by theorem 1, contradicting an

hypothesis of theorem 3. Now let i be an integer in S for which

ai is a minimum. Clearly x' = z + ui is then optimal, which proves

part (a).

Before proving part (b) we digress to establish a lemma that will .1
enable us to sharpen the results of theorem 1. Consider the problem of

finding a vector x* that minimizes a convex function f(x) subject

to the constraints

(16) aix < bi, i=l,2,...,n

where the ai and x are vectors and the bi are scalars. Let S

be the set of indices i for which a x* < bi . Also consider the

same problem where we replace the bi by bl, i.e., (16) becomes

7 x < bI ,i=1,2,...n
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Lem ma 1

(a) If bi = bI for I S and b! > aix*, for ieS, then x*

minimizes f(x) subject to (17).

(b) If b' <b, for some JJS, and if b = b. otherwise,

then there is an x' that minimizes f(x) subject to (17) for which

a x' = b' (provided that (17) is feasible).

I (c) If b > b, for some J/S and if bA = bI otherwise,

then there is an x' that minimizes f(x) subject to (17) for which

I bi _5 ajx' <b.

Proof:

We begin with part (a). Suppose the contrary, that is x'

satisfies (17) and f(x') < f(x*). Since x* satisfies (17), so

does x" = a x" +(l-)xx for 0 < a < 1. DeLLoe by B the bet

of indices i for which aix' > bi . Clearly B is not empty for

otherwise x* could not minimize f(x) subject to (16). Let

mn biai x*

ieB a i(xfx*)

Observe that 0 < a < 1. Also for iVB,

aix" = a a x' +(1-a)a x* < a bi+(l-1)bi= b

-. and for iEB

* alx" = a alx' +(l-a)aix* = 0 ai (xt-x*)+ aix*

S(b -ai *) + (ax*) bi
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Therefore x" satisfies (16) and

f(x") :5 af(xt) + (l-a)f(x*) < a f(x*)+(1-a)f(x*) = f(x*)

which contradicts the optimality of x*.

We also prove part (b) by contradiction. Thus suppose that x'

minimizes f(x) subject to (17), that a X,< b , and that

f(x') < f(x) for all x satisfying (17) for which ajx - b. Let

b -b'
X" a x, + (l-a)x* where (X= -i f

bJ-a x' '

Clearly ajx"= b and a x"< b< for i A J. Also f(x') > f(x*). 0

Therefore

f(x") a f(xt)+(1-a)f(x*) S f(x,)

which is a contradiction. This completes the proof. The proof of

part (c) is similar and is omitted.

As an example of the way in which part (a) of the lemma can be

applied to our problem, suppose that the production schedule x is 4
optimal for p and that, say yi < yi' Then x is also optimal for

all y, for which y, : y Analogous remarks apply to variations of 11
i' xI' and xi. The usefulness of parts (b) and (c) of the lemma

will become apparent in our proof of part (b) of theorem 5.

Proof of theorem 3-part b:

As usual, we consider only the case where an optimal x is given .4
for p.

As a preliminary we show that there is an x' that is optimal

for p' and that satisfies
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V

(18) Y k

and

(19) X, xi for i=l,2,...,k

The property (18) follows from parts (a) and (b) of lemma 1. As a

consequence if > Yk' we may instead let without loss

of optimality.

The proof that (19) holds for the revised parameter set consists

in showing that for any x* that is feasible for p' (revised) and

for which (19) does not hold, there is an alternative schedule x'

that has the properties (i), (ii), (iii) (let z M x in (ii)) given

in the proof of theorem 1. Once this construction is justified, (19)

follows from an obvious adaptation of the corresponding part of the

proof of theorem 1.

Suppose x* does not satisfy (19). Then there is an integer

i, 1< i < k, for which x* > x i . We consider two cases, yi- <

: q-1< iland 31-1 ? yi-1"

Case : Y-l < yi-1

Let j be the largest integer smaller than i for which x* < x.
j J,

Such an integer must exist for if not

Si-i i-i

Y 1 (x*r > (x trt) =Y
t=l t=l

which is a contradiction.
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Let e = min(x*-xi, Yi.-. 1 , x *-x2). Clearly e > 0 and

(20) x*.xi > E; yt-y > for t J,J+l,...,i-1 and x.-x* > e

Consider the alternative production schedule x' defined by

xt = x* + E(uj-ui). It is easy to show that x' is feasible for p'

by using (20) and the feasibility of x and x* respectively for p

and p,.

Now in the usual way

g(x*,r)-g(xf,r) = c (x*)-c (x*+e)

+ . (ht(y*)-ht(yt+E)] + ci(x*)-ci(x*-e)

i-i +

> e[-D-c (x,) - 3 Dh.(y..) + D +c'(x)] > 0
~j t-j U I .. A

The final inequality follows from the fact that for 0 < B < e

x(B) = x-B(uJ-ui) is feasible for p and g(x(B),r) > g(xr).

We have now established properties (i) and (ii). Property (iii)

follows using the same argument given in proving theorem 1. i

Case 2: Yi-l : 1i

Let j be the smallest integer greater than i and not exceeding

k for which x* < x The integer j exists because if not, I
j J*

k k
Y'k = Y~i-l + I (x 'rt) > Yi-1 + I (xt'rt) =Yk

t=i t=i

which contradicts (18).
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Let c = min(x*i, x-x )" Clearly e > 0 and

(21) x*-xi a C.; y~t-yt C for t-i,i+l,...,J-l and x X > C

The alternative schedule x' , x*+.(uj-ui) is feasible for P'

as can be shown using (21). Also

g(x*,r)-g(xt,r) c i(x)-ci(x*-z)

Ji-
[h (y*)h y*- + cj (x*)-c (xj*+c)

e D+c i(x i) + Jjl DAht(yt)-D-c i(x I) > 0 4

t=i

The final inequality follows from the fact that for 0 < 8 < e

x(8) = x-(u.-u.) is feasible for P and g(x(8),r) > R(xr). Thisj 2'

establishes properties (i) and (ii). Property (iii) follows in the

usual way.

Employing theorem 1, lemma 1, (18), and (19), we see that there

is an x' with the property that

Yk- Yk Yk
and

xl1-l 1x x I  for i=l,2,...,k ,

and

x, > xi  for imk+l,...,n
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But by the hypotheses of theorem 3, g(x',r) is linear in x' for

all x' satisfying the above constraints, i.e., there are numbers

ao,al,...,an such that

n

g(x',r) = a + a x

Let SI be the set of indices i, I < i <k , for which there

is a feasible x' with x! < x,. Let be the set of indices J,
S21

k < j < n, for which there is a feasible x' with x' I x. Since

there is a feasible xt either S1 and S are empty, in which

case x' = x is feasible for p', or S1 and S are non empty.

Now if we fix y' at any feasible value between Yk-l and

we may minimize g(x',r) by finding an integer i in Sl for which

ai is a maximum and an integer j in S2 for which aj is a minimum

and letting x' = x+(yk-yk')(ui-ui). Then g(x',r) = g(x,r)+(yk-y)(aJ- a).

Thus to minimize g(x',r) we let yk' = yk' i.e., x' = x, if

aj > ai, and let y = yk-1, i.e., x' = x + U -ui, if a < a i

This completes the proof.

An Algorithm for Automatic Computation

We now describe a procedure that starts with an x that is optimal

for p = (-r,R, x, , ) and that has integral coordinates. The

algorithm then proceeds to find an x' that is optimal for

p' = (-r', t,xt,3, ') and that has integral coordinates, or discovers-I

that pl is not feasible. The algorithm involves three phases. In i
phase 1 the inventory and production constraints are relaxed, one at

a time, until an optimal x is found for the corresponding parameter Ij
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IiI

set - = (-r, x , y) that has the property that (, 5) >

and (y, j) < (x', i'). No infeasibilities can arise in phase 1. The

second phase involves moving r "toward" r'. This is done so that at

all times each intermediate requirements schedule r, say, is such that

A A
n -R < 0. This phase terminates with an x that is optimal for1 ~-n n-

S(-r, X, y, ), provided that p is feasible. A discussion of

how infeasibilities are dealt with in phase 2 is deferred briefly. The

third phase involves tightening the production and inventory constraints

until p' is reached. If at any step in this final phase, an infeasible

parameter set is found, then p' is not feasible.

We remark that with start 1, phase 2 (and often phase 3) is

omitted. On the other hand with start 2, phase 1 (and often phase 3)

is not needed.

An important simplification is possible in phases 1 and 3 whenever

a production or inventory constraint is not binding. The idea is to

take advantage of part (a) of lemma 1. For example if in phase I we

find an x that is optimal for p = (-r, 7, , y., Z) and, say,

.y < < i then we may immediately let y =y and still be

assured that x is optimal for the revised . Similarly, if we find

in phase 3 an x that is optimal for p = (-r', x, x, y, Z), and, say,

2i^ <i, xii , then we may immediately let xi = min(xixj) without

disturbing the optimality of X. These shortcuts avoid numerous appli-

cations of theorem 3 and are well worth using.

It remains to develop a means for dealing with infeasibilities in

phase 2. In particular suppose that we seek an x that is optimal for

p = (-r, _,Xy, ). We assume that p is feasible and has integral
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coordinates, and that P holds. Our approach to solving this problem,

hereafter called problem A, is to construct a modified problem, called

problem B, in which the parameter set is p = (-r, 2E, Y, ,) where

x, y, and Z are arbitrary but not effective bounds. In problem B

the cost function is

n n-1

i=l i=l "

where

fci(xi) ii < x xi !32

hi(z±) - M(yix:i) , Yi < zi

i (yi) =hi(yi) , Vi 5 Yj :5 Vi
=hi(yi) + F) < yi

and M is a large positive constant. Notice that if x is feasible

for p, then x is also feasible for p; furthermore, g(x,r) = g(x,r)°

Let
a =i <i <nmax D'cii) ,  I

b = max Dhi (yi), b = max -D~hi(Zi) + . i
l<i<n l<i<n

ci = max - ci(xi), ci = min - ci(xi)

Ai <x <Xi 5 x 1<5x,: <x

hi = max - hi(yi), and h,= min hi(Yi)
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Let M be any number for which (En = h = 0)
+ n

M>max (a, b-,b, 2 + h Ti

Since M is greater than a, b", b+, the ci and h i are convex

functions. Hence, the modified cost functions satisfy P.

It follows from theorem 3 and the discussion thereafter that there

exists an x that has integral coordinates and that is optimal for

problem B. We now show that either x is feasible (and hencv optimal)

for problem A or that problem A has no feasible production schedule.

The proof is by contradiction. Suppose that x is not feasible

for problem A, but that x* (say) is feasible for that problem. Then

for some i, yi > yi+l, yi < yii-l or x. > x1 +l since the y Z

-i' x,, and x are integers. Thus,

n n
Z(x,r) > M + (+h ) > + (i+i)

I i~li=l

g(x*,r) = j(x*,r)

which contradicts the optimality of x for problem B. The proof is

complete.

In carrying out the computations, it is not necessary to know a

suitable value of M. Instead, when a collection of new schedules is

examined, as in applying theorem 3, one proceeds as follows. First

locate the "least infeasible" schedules in the class being examined,

i.e., the schedules for which the sum of the amounts by which the xi

and y. respectively exceed the x i and yi, and the amount by which

the yi fall below the y,, is minimal. Then, letting M = 0, choose

a minimal cost schedule from among those located using g as the cost

function.
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